Toiminnallinen

Oikean kolmion laskin - Etsi sivut, kulmat, alue ja trigonometria

Mainos
Mitä tietoja sinulla on?

Vaakasuora jalka, joka kohtaa oikean kulman.

Pystysuora jalka, joka kohtaa suoran kulman.

Tulos

Pohja (jalka a)

3.000

Yksiköt

Korkeus (jalka b)

4.000

Yksiköt

Hypotenuusa

5.000

Yksiköt

Alue

6.000

Neliöyksiköt

Ympärysmitta

12.000

Yksiköt kolmion ympärillä

Kuvasuhde

1.333

Korkeus ÷ Pohja

Korkeus ja säteet

Korkeus hypotenuusaan
2.400
Piirretyn ympyrän säde
1.000
Ympyrän säde
2.500

Mittasuhteet

Jalkasuhde (b ÷ a)
1.333
Jalkaero
1.000
Täydentävät kulmat
53.13° / 36.87°

Skaalattu kolmiokaavio

3.00 4.00 5.00

Kaavio skaalattu pisimmän jalan mukaan visuaalista vertailua varten.

Kulma + trigonometrin erittely

Kulma Mitta (°) Sini Kosini Tangentti
∠A (base ↔ hypotenuse) 53.130 0.8000 0.6000 1.3333
∠B (height ↔ hypotenuse) 36.870 0.6000 0.8000 0.7500
∠C (right angle) 90.000 1.0000 0.0000

Geometrian näkemyksiä

  • Scalene right triangle

    All three sides differ in length, leading to complementary acute angles.

  • Pythagorean triple detected

    Side lengths closely match the 3-4-5 integer triple.

  • Shape proportion

    The triangle is taller than it is wide with an aspect ratio of about 1.33:1.

  • Inradius and altitude

    The inscribed circle radius is 1.000 and the altitude to the hypotenuse is 2.400.

Pikaopas

  • Suorakulmaisen kolmion pinta-ala on aina puolet pohjan ja korkeuden summasta.
  • Käytä siniä ja kosinia projisoidaksesi kaikki muut pituudet hypotenuusasta.
  • Täydentävät terävät kulmat ovat aina summaltaan 90°. Yhden kulman tunteminen antaa automaattisesti toisenkin.
Kattava oikea kolmion laskin, jossa on visuaalisia kaavioita, trigonometriataulukoita, geometria -oivalluksia ja Pythagoran kolminkertaista havaitsemista opiskelijoille ja ammattilaisille.
Mainos

Ratkaise mikä tahansa suorakulmainen kolmio välittömästi kattavalla laskimellamme, joka löytää puuttuvat sivut, kulmat, pinta-alan, kehän ja edistyneet geometriset ominaisuudet. Täydellinen opiskelijoille, insinööreille, arkkitehdeille ja kaikille trigonometrian ja geometrian laskelmien parissa työskenteleville.

Lisäominaisuudet:

  • Täydellinen kolmioanalyysi: Laske kaikki sivut, kulmat, pinta-ala, kehä ja korkeus mistä tahansa kahdesta tunnetusta arvosta
  • Visuaalinen kaavio: Skaalattu kolmion esitys suhteellisella tarkkuudella ja kulmamerkinnöillä
  • Trigonometriataulukko: Täydelliset sini-, kosini- ja tangenttiarvot kaikille kulmille
  • Pythagoraan kolmoistunnistus: Tunnistaa automaattisesti kokonaislukukolmion suhteet
  • Geometry Insights: Tarjoaa kuvasuhteita, täydentäviä kulmia ja muotoanalyysiä
  • Ympyrän ominaisuudet: Laskee kaiverretut ja rajatut ympyrän säteet

Täydellinen:

  • Opiskelijat opiskelevat geometriaa, trigonometriaa ja Pythagoraan lausetta
  • Insinöörit ja arkkitehdit, jotka tarvitsevat tarkkoja kolmiolaskelmia rakennesuunnitteluun
  • Opettajat opettavat geometrisia käsitteitä visuaalisilla demonstraatioilla
  • Rakentamisen, maanmittauksen ja tekniikan alan ammattilaiset

Kuinka se toimii: Syötä vain kaksi tunnettua arvoa (sivut tai kulmat) ja suorakulmaisen kolmion ratkaisijamme laskee välittömästi kaikki jäljellä olevat ominaisuudet. Työkalu käsittelee erilaisia syöttöyhdistelmiä, kuten pohjaa ja korkeutta, hypotenuusaa ja kulmaa tai mitä tahansa sivukulmapareja.

Matemaattinen perusta: Perustuu geometrisiin perusperiaatteisiin, mukaan lukien Pythagoraan lause (a² + b² = c²), trigonometriset suhteet (sini, kosini, tangentti) ja kolmion pinta-alakaavat. Laskimemme varmistaa tarkkuuden akateemiseen työhön, ammatillisiin projekteihin ja todellisiin sovelluksiin.

Ainutlaatuiset edut:

  • Välittömät tulokset: Ei monimutkaisia kaavoja muistettavaksi
  • Visuaalinen oppiminen: Skaalatut kaaviot parantavat ymmärtämistä
  • Täydelliset ratkaisut: Enemmän kuin peruslaskimet - sisältää edistyneitä ominaisuuksia
  • Koulutusarvo: Geometrian oivallukset selittävät kolmioiden suhteita

Aloita suorakulmaisen kolmion ongelmien ratkaiseminen jo tänään ilmaisella, kattavalla laskintyökalullamme.

API-dokumentaatio tulossa pian

Documentation for this tool is being prepared. Please check back later or visit our full API documentation.